Phương pháp xử lý nước thải - Sơ lược phương pháp


         Công ty Cổ phần Composite và Công nghệ Ánh Dương chuyên về composite và xử lý môi trường ở khu vực miền bắc xin giới thiệu với các bạn sơ lược về các phương pháp xử lý nước thải. Đây cũng là các phương pháp chính trong xử lý nước thải sinh hoạt.


     I.ĐÔI ĐIỀU VỀ XỬ LÝ NƯỚC THẢI
       Xử lý nước thải là nhu cầu bức thiết ở nước ta. Theo một vài  thống kê thì hiện nay trên cả nước thì hầu hết các doanh nghiệp, nhà máy đều có hệ thống xử lý nước thải(HTXLNT). Vấn đề mấu chốt ở đây là đa số các  HTXLNT của các nhà máy đều không xử lý đạt. Chúng ta phải nhìn nhận vấn đề này ở nhiều khía cạnh.

       Chất lượng nước thải sau xử lý không đạt do chủ đầu tư cố tình gây nên!!!

Phương pháp xử lý nước thải
Công ty Ánh Dương vận chuyển bồn composite xử lý nước thải sinh hoạt
tới công trình để lắp đặt

       Chi phí xử lý nước thải 1 m3 có giá thành dao động từ 4.000 đồng-15.000 đồng, nếu một nhà máy lớn như Vedan, khu công nghiệp Sonadezi Long Thành… thải ra mỗi ngày trên 5000m3 thì chi phí vận hành sẽ số tiền bỏ ra hàng tháng cả mấy tỷ đồng. Các nhà máy có lưu lượng nước thải lớn như Vedan rất nhiều. Nếu doanh nghiệp nào làm ăn có lương tâm thì không sao, nếu họ vì lợi nhuận, sợ tốn kém do đầu tư HTXLNT, vận hành hệ thống, mà lén lút xả trộm hậu quả môi trường sống chúng ta lãnh đủ, hậu quả ô nhiễm dài lâu không thể bù đắp nổi.

Nhưng có rất nhiều chủ đầu tư làm ăn đàng hoàng, họ không tiếc tiền để đầu tư hệ thống xử lý nước thải bài bản, nhưng HTXLNT của họ vẫn không đạt. Nguyên nhân đến các yếu tố quan trọng sau:

- Đến từ các công ty xây dựng hệ thống: hệ thống xử lý nước thải được tư vấn, thiết kế, lắp đặt không sát thực tế, dẫn đến khi vận hành gặp vô vàn khó khăn, èo uột sửa tới sửa lui mãi. Chúng tôi chỉ đơn cử hai hệ thống xử lý nước thải sau: Công ty dệt nhuộm Phong Phú với HTXLNT công suất 4800 m3/ngày, xây dựng xong không nghiệm thu được do độ màu không xử lý được. Mất 3 năm, Phó Tổng giám đốc công ty  Trần Ngọc Nga cùng nhân viên lặn lội mưa nắng nghiên cứu mới tạm khắc phục được. Hay như công ty Rostaing, một nhà đầu tư từ Pháp, là công ty hàng đầu về thuộc da trên thế giới, đã bỏ ra rất nhiều tiền cho một công ty môi trường nổi tiếng (ở đây chúng tôi chỉ xin đơn cử chứ không hề có ý định triệt hạ uy tín của ai, nên xin dấu tên các công ty môi trường đó) xây dựng hệ thống xử lý mà không đạt, mất tiền sửa đi, sửa lại mãi mà nước thải vẫn không đủ tiêu chuẩn xả thải, buộc công ty của Pháp phải kiện ra tòa. Ông JACQUES ROSTAING tổng giám đốc công ty Rostaing chia sẽ: "tôi buộc phải suy nghĩ về cách làm ăn của người Việt Nam! ".
Công ty Ánh Dương lắp đặt bồn composite xử lý nước thải
 tại  khu đô thị sinh  thái Như Quỳnh  - Hà Nội

- Đến từ người vận hành hệ thống: Việc xem nhẹ công tác vận hành hệ thống khiến chủ đầu tư mất nhiều tiền bạc và thời gian hơn cả xây mới hệ thống. Cân đo đong đếm mức lương một lao động phổ thông với một kỹ sư khiến chủ đầu tư thiệt hại rất nhiều. Công tác vận hành hệ thống xử lý nước thải rất phức tạp, nên cần có kỹ sư chuyên ngành môi trường đảm trách. Người vận hành hệ thống xử lý nước thải là người có tiếng nói quyết định chất lượng nước thải,  giá cả vận hành sau cùng. Theo dõi bông bùn vi sinh phát triển thế nào, màu bông bùn nói lên vi sinh khỏe hay yếu, hóa chất phèn sắt, phèn nhôm, axit, xút, polime châm dư hay thiếu, kỹ năng xử lý sự cố….quyết định tuổi thọ hệ thống, quyết định mức giá thành vận hành hệ thống.
Dưới đây  xin giới thiệu tổng quan các phương pháp xử lý nước thải đang sử dụng tại Việt Nam



II.SƠ LƯỢC CÁC PHƯƠNG PHÁP XỬ LÝ NƯỚC THẢI

Nước thải nói chung có chứa nhiều chất ô nhiễm khác nhau, đòi hỏi phải xử lý bằng những phương pháp thích hợp khác nhau. Sau đây là tổng quan các phương pháp xử lý nước thải.
Các phương pháp xử lý nước thải được chia thành các loại sau:

- Phương pháp xử lý lý học;

- Phương pháp xử lý hóa học và hóa lý;

- Phương pháp xử lý sinh học.

1.  Phương pháp xử lý lý học

Trong nước thải thường chứa các chất không tan ở dạng lơ lửng. Để tách các chất này ra khỏi nước thải. Thường sử dụng các phương pháp cơ học như lọc qua song chắn rác hoặc lưới chắn rác, lắng dưới tác dụng của trọng lực hoặc lực li tâm và lọc. Tùy theo kích thước, tính chất lý hóa, nồng độ chất lơ lửng, lưu lượng nước thải và mức độ cần làm sạch mà lựa chọn công nghệ xử lý thích hợp.

1.1.    Song chắn rác

Nước thải dẫn vào hệ thống xử lý trước hết phải qua song chắn rác. Tại đây các thành phần có kích thước lớn (rác) như giẻ, rác, vỏ đồ hộp, rác cây, bao nilon… được giữ lại. Nhờ đó tránh làm tắc bơm, đường ống hoặc kênh dẫn. Đây là bước quan trọng nhằm đảm bảo an toàn và điều kiện làm việc thuận lợi cho cả hệ thống xử lý nước thải.
Tùy theo kích thước khe hở, song chắn rác được phân thành loại thô, trung bình và mịn. Song chắn rác thô có khoảng cách giữa các thanh từ 60 – 100 mm và song chắn rác mịn có khoảng cách giữa các thanh từ 10 – 25 mm. Theo hình dạng có thể phân thành song chắn rác và lưới chắn rác. Song chắn rác cũng có thể đặt cố định hoặc di động.
Song chắn rác được làm bằng kim loại, đặt ở cửa vào kênh dẫn, nghiêng một góc  45 – 600 nếu làm sạch thủ công hoặc nghiêng một góc 75 – 850 nếu làm sạch bằng máy. Tiết diện của song chắn có thể tròn, vuông hoặc hỗn hợp. Song chắn tiết diện tròn có trở lực nhỏ nhất nhưng nhanh bị tắc bởi các vật giữ lại. Do đó, thông dụng hơn cả là thanh có tiết diện hỗn hợp, cạnh vuông góc phía sau và cạnh tròn phía trước hướng đối diện với dòng chảy. Vận tốc nước chảy qua song chắn giới hạn trong khoảng từ 0,6 -1m/s. Vận tốc cực đại giao động trong khoảng 0,75 -1m/s nhằm tránh đẩy rác qua khe của song. Vận tốc cực tiểu là 0,4m/s nhằm tránh phân hủy các chất thải rắn.

Công ty Ánh Dương lắp đặt
 bồn composite xử lý nước thải sinh hoạt tại công trình  FUJITA
1.2. Lắng cát

Bể lắng cát được thiết kế để tách các tạp chất vô cơ không tan có kích thước từ 0,2mm đến 2mm ra khỏi nước thải nhằm đảm bảo an toàn cho bơm khỏi bị cát, sỏi bào mòn, tránh tắc đường ống dẫn và tránh ảnh hưởng đến các công trình sinh học phía sau. Bể lắng cát có thể phân thành 2 loại: bể lắng ngang và bể lắng đứng. Ngoài ra để tăng hiệu quả lắng cát, bể lắng cát thổi khí cũng được sử dụng rộng rãi.
Vận tốc dòng chảy trong bể lắng ngang không được vượt qua 0,3 m/s. Vận tốc này cho phép các hạt cát, các hạt sỏ và các hạt vô cơ khác lắng xuống đáy, còn hầu hết các hạt hữu cơ khác không lắng và được xử lý ở các công trình tiếp theo.

1.3. Lắng

Bể lắng có nhiệm vụ lắng các hạt cặn lơ lửng có sẵn trong nước thải (bể lắng đợt 1) hoặc cặn được tạo ra từ quá trình keo tụ tạo bông hay quá trình xử lý sinh học (bể lắng đợt 2). Theo dòng chảy, bể lắng được phân thành: bể lắng ngang và bể lắng đứng.
Trong bể lắng ngang, dòng nước chảy theo phương ngang qua bể với vận tốc không lớn hơn 0,01 m/s và thời gian lưu nước thừ 1,5 – 2,5 h. Các bể lắng ngang thường được sử dụng khi lưu lượng nước thải lớn hơn 15000 m3/ngày. Đối với bể lắng đứng, nóc thải chuyển động theo phương thẳng đứng từ dưới lên đến vách tràn với vận tốc từ 0,5 – 0,6 m/s và thời gian lưu nước trong bể dao động khoảng 45 – 120 phút. Hiệu suất lắng của bể lắng đứng thường thấp hơn bể lắng ngang từ 10 – 20 %.

394
Bồn composite xử lý nước thải do công ty Ánh  Dương sản xuất
             
1.4. Tuyển nổi

Phương pháp tuyển nổi thường được sử dụng để tách các tạp chất (ở dạng rắn hoặc lỏng) phân tán không tan, tự lắng kém khỏi pha lỏng. Trong một số trường hợp, quá trình này còn được dùng để tách các chất hòa tan như các chất hoạt động bề mặt. Trong xử lý nước thải, quá trình tuyển nổi thường được sử dụng để khử các chất lơ lửng, làm đặc bùn sinh học. Ưu điểm cơ bản của phương pháp này là có thể khử hoàn toàn các hạt nhỏ, nhẹ, lắng chậm trong thời gian ngắn.
Quá trình tuyển nổi được thực hiện bằng cách sục các bọt khí nhỏ vào pha lỏng. Các bọt khí này sẽ kết dính với các hạt cặn. Khi khối lượng riêng của tập hợp bọt khí và cặn nhỏ hơn khối lượng riêng của nước, cặn sẽ theo bọt nổi lên bề mặt.
Hiệu suất quá trình tuyển nổi phụ thuộc vào số lượng, kích thước bọt khí, hàm lượng chất rắn. Kích thước tối ưu của bọt khí nằm trong khoảng 15 – 30 micromet (bình thường từ 50 – 120 micromet). Khi hàm lượng hạt rắn cao, xác xuất va chạm và kết dính giữa các hạt sẽ tăng lên, do đó, lượng khí tiêu tốn sẽ giảm. Trong quá trình tuyển nổi, việc ổn định kích thước bọt khí có ý nghĩa quan trọng.

2. Phương pháp xử lý hóa học và hóa lý

2.1. Trung hòa

Nước thải chứa acid vô cơ hoặc kiềm cần được trung hòa đưa pH về khoảng 6,5 – 8,5 trước khi thải vào nguồn nhận hoặc sử dụng cho công nghệ xử lý tiếp theo. Trung hòa nước thải có thể thực hiện bằng nhiều cách:

- Trộn lẫn nước thải acid và nước thải kiềm;

– Bổ sung các tác nhân hóa học;

- Lọc nước acid qua vật liệu có tác dụng trung hòa;

– Hấp thụ khí acid bằng nước kiềm hoặc hấp thụ ammoniac bằng nước acid.

2.2.  Keo tụ – tạo bông

Trong nguồn nước, một phần các hạt thường tồn tại ở dạng các hạt keo mịn phân tán, kích thước các hạt thường dao động từ 0,1 – 10 micromet. Các hạt này không nổi cũng không lắng, và do đó tương đối khó tách loại. Vì kích thước hạt nhỏ, tỷ số diện tích bề mặt và thể tích của chúng rất lớn nên hiện tượng hóa học bề mặt trở nên rất quan trọng. Theo nguyên tắc, các hạt nhỏ trong nước có khuynh hướng keo tụ do lực hút Vander Waals giữa các hạt. Lực này có thể dẫn đến sự kết dính giữa các hạt ngay khi khoảng cách giữa chúng đủ nhỏ nhờ va chạm. Sự va chạm xảy ra nhờ chuyển động Brown và do tác động của sự xáo trộn. Tuy nhiên trong trường hợp phân tán cao, các hạt duy trì trạng thái phân tán nhờ lực đẩy tĩnh điện vì bề mặt các hạt mang tích điện, có thể là điện tích âm hoặc điện tích dương nhờ sự hấp thụ có chọn lọc các ion trong dung dịch hoặc sự ion hóa các nhóm hoạt hóa. Trạng thái lơ lửng của các hạt keo được bền hóa nhờ lực đẩy tĩnh điện. Do đó, để phá tính bền của hạt keo cần trung hòa điện tích bề mặt của chúng, quá trình này được gọi là quá trình keo tụ. Các hạt keo đã bị trung hòa điện tích có thể liên kết với các hạt keo khác tạo thành bông cặn có kích thước lớn hơn, nặng hơn và lắng xuống, quá trình này được gọi là quá trình tạo bông.

3.  Phương pháp sinh học

Phương pháp sinh học được ứng dụng để xử lý các chất hữu cơ hòa tan có trong nước thải cũng như một số chất vô cơ như H2S, Sunfit, ammonia, Nito… dựa trên cơ sở hoạt động của vi sinh vật để phân hủy các chất hữu cơ gây ô nhiễm. Vi sinh vật sử dụng chất hữu cơ và một số khoáng  chất để làm thức ăn. Một cách tổng quát, phương pháp xử lý sinh học có thể phân thành 2 loại:

- Phương pháp kị khí sử dụng nhóm vi sinh vật kị khí, hoạt động trong điều kiện không có oxy.

- Phương pháp hiếu khí sử dụng nhóm vi sinh vật hiếu khí, hoạt động trong điều kiện cung cấp oxy liên tục.

Quá trình phân hủy các chất hữu cơ nhờ vi sinh vật gọi là quá trình oxy hóa sinh hóa. Để thực hiện quá trình này, các chất hữu cơ hòa tan, cả chất keo và chất phân tán nhỏ trong nước thải cần di chuyển vào bên trong tế bào vi sinh vật theo 3 giai đoạn chính như sau:
– Chuyển các chất ô nhiễm từ pha lỏng đến bề mặt tế bào vi sinh vật.
– Khuếch tán từ bề mặt tế bào qua màng bán thấm do sự chênh lệch nồng độ bên trong và bên ngoài tế bào.
– Chuyển hóa các chất trong tế bào vi sinh vật, sản sinh năng lượng và tổng hợp tế bào mới.

Tốc độ quá trình oxy hóa sinh hóa phụ thộc vào nồng độ chất hữu cơ, hàm lượng các tạp chất và mức độ ổn định của lưu lượng nước thải vào hệ thống xử lý. Ở mỗi điều kiện xử lý nhất định, các yếu tố chính ảnh hưởng đến tốc độ phản ứng sinh hoá là chế độ thủy động, hàm lượng oxy trong nước thải, nhiệt độ, pH, dinh dưỡng và các yếu tố vi lượng.

3.1. Phương pháp sinh học kỵ khí

Quá trình phân hủy kỵ khí các chất hữu cơ là quá trình sinh hóa phức tạp tạo ra hàng trăm sản phẩm trung gian và phản ứng trung gian. Tuy nhiên phương trình phản ứng sinh hóa trong điều kiện kỵ khí có thể biểu diễn đơn giản như sau:
Vi sinh vật
Chất hữu cơ    ——————>  CH4 + CO2 + H2 + NH3 + H2S + Tế bào mới
Một cách tổng quát quá trình phân hủy kỵ khí xảy ra theo 4 giai đoạn:

- Giai đoạn 1: thủy phân, cắt mạch các hợp chất cao phân tử;
- Giai đoạn 2: acid hóa;
- Giai đoạn 3: acetate hóa;
- Giai doạn 4: methan hóa.

Các chất thải hữu cơ chứa nhiều chất hữu cơ cao phân tử như proteins, chất béo, carbohydrates, celluloses, lignin,…trong giai đoạn thủy phân, sẽ được cắt mạch tạo những phân tử đơn giản hơn, dễ phân hủy hơn. Các phản ứng thủy phân sẽ chuyển hóa protein thành amino acids, carbohydrate thành đường đơn, và chất béo thành các acid béo. Trong giai đoạn acid hóa, các chất hữu cơ đơn giản lại được tiếp tục chuyển hóa thành acetic acid, H2 và CO2. Các acid béo dễ bay hơi chủ yếu là acetic acid, propionic acid và lactic acid. Bên cạnh đó, CO2 và H2, methanol, các rượu đơn giản khác cũng được hình thành trong quá trình cắt mạch carbohydrate. Vi sinh vật chuyển hóa methan chỉ có thể phân hủy một số loại cơ chất nhất định như CO2 + H2, formate, acetate, methanol, methylamines, và CO.
Tùy theo trạng thái của bùn, có thể chia quá trình xử lý kỵ khí thành:

- Quá trình xử lý kỵ khí với vi sinh vật sinh trưởng dạng lơ lửng như quá trình tiếp xúc kỵ khí (Anaerobic Contact Process), quá trình xử lý bằng lớp bùn kỵ khí với dòng nước đi từ dưới lên (UASB);

- Qúa trình xử lý kỵ khí với vi sinh vật sinh trưởng dạng dính bám như quá trình lọc kỵ khí (Anaerobic Filter Process).

3.2. Phương pháp xử lý sinh học hiếu khí trong xử lý nước thải

Quá trình xử lý sinh học hiếu khí nước thải gồm ba giai đoạn:
- Oxy hóa các chất hữu cơ;
- Tổng hợp tế bào mới;
- Phân hủy nội bào.

Các quá trình xử lý sinh học bằng phương pháp hiếu khí có thể xảy ra ở điều kiện tự nhiên hoặc nhân tạo. Trong các công trình xử lý nhân tạo, người ta tạo điều kiện tối ưu cho quá trình oxy hóa sinh hóa nên quá trình xử lý có tốc độ và hiệu suất cao hơn rất nhiều. Tùy theo trạng thái tồn tại của vi sinh vật, quá trình xử lý sinh học hiếu khí nhân tạo có thể chia thành:
-  Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng lơ lửng chủ yếu được sử dụng để khử chất hữu cơ chứa carbon như quá trình bùn hoạt tính, hồ làm thoáng, bể phản ứng hoạt động gián đoạn, quá trình lên men phân hủy hiếu khí. Trong số các quá trình này, quá trình bùn hoạt tính là quá trình phổ biến nhất.
- Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng dính bám như quá trình bùn hoạt tính dính bám, bể lọc nhỏ giọt, bể lọc cao tải, đĩa sinh học, bể phản ứng nitrate với màng cố định.